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Abstract Phasor Measurement Units (PMUs) are starting to see increased deploy-
ment, enabling accurate measurement of power grid electrical properties to determine
system health. Due to the costs associated with PMU acquisition and maintenance, it
is practically important to place the minimum number of PMUs in order to achieve
system complete observability. In this paper, we consider a variety of optimization
models for the PMU placement problem that addresses more realistic assumptions
than simple infinite-capacity placement models. Specifically, instead of assuming that
a PMU can sense all lines incident to the bus at which it is placed, we impose the more
realistic assumption that PMUs have restricted channel capacity, with per-unit cost
given as a function of channel capacity. The optimization objective is then to mini-
mize the total cost of placed PMUs, in contrast to their number. Further, we leverage
the zero-injection bus properties to reduce the quantity and cost of placed PMUs.

In formulating our optimization models, we identify a close relationship between
the PMU placement problem (PPP) and a classic combinatorial problem, the set cover
problem (SCP). If channel capacity limits are ignored, there is a close relationship
between the PPP and the dominating set problem (DSP), a special case of the SCP.
Similarly, when measurement redundancy is imposed as a design requirement, there
is a close relationship between the PPP and the set multi-cover problem (SMCP),
a generalized version of the SCP. These connections to well-studied combinational
problems are not well-known in the power systems literature, and can be leveraged
to improve solution algorithms.

We demonstrate that more realistic, high-fidelity PPP optimization models can be
solved to optimality using commercial integer programing solvers such as CPLEX.
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Specifically, run-times for all test cases, ranging from IEEE 14-bus to 300-bus test
systems, are less than a second. This result indicates that the size of system that can
be analyzed using state-of-the-art solvers is considerable. Further, our results call
into question the need for problem-specific heuristic solution algorithms for the PPP,
many of which have been proposed over the past decade. Finally, we analyze cost
versus performance tradeoffs using our PPP optimization models on various IEEE
test systems.

Keywords PMU placement ·Multi-channel PMUs · Set cover problem ·Dominating
set problem · Set multi-cover problem · Integer programming

1 Introduction

Phasor networks are seeing increased world-wide deployment, in order to improve
stability, state estimation, monitoring and protection, and control and operation in
power systems. Phasor Measurement Units (PMUs) are a keystone technology in
phasor networks, and their deployment and maintenance costs are a major driver in
phasor network design. Consequently, the problem of minimizing the cost of PMU
placements in phasor network design is of significant practical interest, and as a result
has seen widespread attention from the research community.

PMUs are placed at buses, i.e., substations to which transmission lines, loads, and
generators are connected. Due to the high cost of PMUs and the lack of communica-
tion facilities at some substations (further increasing the cost of PMU placement at a
bus), it is important to minimize the number of PMUs placed while at the same time
retaining the ability to monitor the entire power system. A PMU measures the voltage
phasor of the bus at which it is placed, and the current phasor of each line incident
to such buses. The corresponding buses and lines are said to be observed. The PMU
Placement Problem (PPP) is defined as the problem of minimizing the total number
of PMUs placed while ensuring that all buses and lines in a power system are ob-
served. The PPP is conceptually related to several classic combinatorial optimization
problems. For example, the dominating set problem requires all vertices in a network
to be observed, while the vertex cover problem requires all edges to be observed.
However, Ohm’s law and Kirchoff’s current law impose additional constraints that
differentiate the PPP from these classical optimization problems.

The PPP has been widely studied in last decade. The general PPP is known to
be NP-hard [1–3]. The computational challenge has motivated the introduction of
many heuristic solution methods, including genetic algorithms, tabu search, simu-
lated annealing, and particle swarm optimization [4]. Solution methods based on in-
teger programming (IP) models have also been considered [5–9,4], as the PPP subject
to special network topologies [1,2]. Recently, the probabilistic and reliability-based
research for PMU placement is considered in the development of wide-area measure-
ment system [10,11]. On the other hand, another new trend in PMU placement is to
consider the variable-cost PMUs [12].

These prior studies on the PPP generally assume that an individual PMU can
sense all lines incident to the bus at which it is placed. However, in practice PMU
manufacturers produce several types of PMUs, with different functions and varying
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channel properties [13,14]. Therefore, instead of assuming unlimited channel capac-
ity, we impose the more realistic assumption of restricted channel capacities, with
per-unit cost given as a function of channel capacity. Our focus here is then on the
general Multi-Channel PMU Placement Problem (MC-PPP), in which the objective
is to minimize the total cost of PMUs required to achieve complete system observ-
ability. To reduce the total cost, we leverage the well-known zero-injection property
(based on Kirchoff’s current law) in our optimization models [9,5,6,4]. The basic IP
model we used in this paper for considering zero-injection property is based on [9].

The MC-PPP has been previously investigated in the literature. For example, [15,
16] considered a special case of the MC-PPP in which PMUs are of unit channel ca-
pacity; such PMUs are known as single-channel or branch PMUs. However, this ap-
proach cannot be generalized to multi-channel PMU placement. In [17,18], an integer
programming formulation was proposed to solve the MC-PPP, and analyzed on a 14-
bus test system. Several approaches to modeling the zero-injection bus property were
considered. However, each of these approaches fails to guarantee optimal solutions
for power systems with a general network topology. In [19], as an improvement of
[18] without any general formulations, it accounted for the number of available chan-
nels for the chosen types of PMUs and also it presented upper limit by considering
the graph sparsity. In [20], an IP model was proposed based on several complicated
matrices, to consider zero-injection buses.

Other researchers have considered limits on the number of PMU channels [21,
22], but these efforts have relied on heuristic procedures to obtain solutions. As a re-
sult, no optimality guarantees are provided. [13] similarly considered channel limits,
also solved with heuristic procedures, but failed to leverage the zero-injection bus
property. Finally, although [20] leverages the zero-injection bus property, the formu-
lation requires significant changes to adapt to different types of PMUs with varying
numbers of channels.

The primary contributions of this paper to the PMU placement literature are as
follows: (1) we establish a relationship between PMU placement optimization models
and several classical combinatorial optimization problems; (2) we propose a general,
simple, and easily reproducible integer programming model for multi-channel PMU
placement that thoroughly considers the application of the zero-injection bus prop-
erty; (3) we demonstrate that one can quickly obtain exact, globally optimality solu-
tions to our integer programming model using widely available commercial solvers,
calling into question the utility for problem-specific heuristics in this domain; and
(4) we show that our integer programming model can be extended to include consid-
eration of PMUs with varying numbers of channel capacities, to be placed into one
system in the most cost-effective manner possible.

The reminder of this paper is organized as follows. In Section 2, we first introduce
the nomenclature, and Ohm’s law and Kirchhoff’s current law for observability in
power systems. We then present the IP formulations for the MC-PPP with and with-
out consideration of zero-injection buses. In Section 3, we introduce measurement
redundancy for buses in the MC-PPP, while in Section 4, a more general MC-PPP
is considered with different types of PMUs. In Section 5, numerical experiments are
performed and analyzed on six IEEE test systems. Finally, we conclude in Section 6
with a summary of our results.
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2 Integer Programming Models for PMU Placement

2.1 Nomenclature

We define a Power System Graph (PSG) as an undirected graph G = (V,E). V and E
respectively represent sets of buses and transmission lines. Let V = {v1,v2, · · · ,v|V |},
and let an edge (vi,v j)∈E denote a transmission line joining buses vi,v j ∈V . Finally,
let the cardinality |V | be denoted by n.

Some key structural features of a PSG are given as follows:

– The adjacency matrix A = (ai j)n×n: Let ai j = 1 if i = j or buses i and j are
connected by a transmission line (vi,v j) ∈ E, and ai j = 0 otherwise.

– The neighborhoods N(vi), N[vi] of a vertex vi: N(vi) = {v j ∈V |(vi,v j) ∈ E} de-
notes the open (i.e., excluding vi) neighborhood of vi; N[vi] =N(vi)∪{vi} denotes
the closed (i.e., including vi) neighborhood of vertex vi.

– The degree di of a vertex vi: di = |N(vi)| denotes the number of vertices within
the open neighborhood of vi. Let the maximum degree of G be given by ∆(G) :=
maxi:vi∈V di, and the minimum degree be given by δ (G) := mini:vi∈V di. If δ (G) =
0, there exists at least one isolated vertex in G. However, because isolated buses
are meaningless in the context of power systems analysis, we assume that δ (G)≥
1.

– The set VZ of zero-injection buses: The set of zero-injection buses is denoted by
VZ = {vi ∈ V : Zi = 1}, where Zi = 1 indicates that vertex vi is a zero-injection
bus; Zi = 0 otherwise. Clearly, VZ ⊆ V . A zero-injection bus is a transshipment
bus in the system, lacking generation and load. The zero-injection bus property,
described subsequently, can be leveraged in order to reduce the number of PMUs
required to achieve complete observability of a power system.

The number of lines incident to a bus that a PMU placed at that bus can sense is
known as the channel capacity of the PMU. In the MC-PPP, the optimization objec-
tive is to place PMUs with variable channel capacities on buses of G such that the
aggregate set of PMUs can observe the voltage phasors of all buses v ∈ V and the
current phasors of all transmission lines e ∈ E. We now introduce notation related to
multi-channel PMUs and optimization models for the MC-PPP:

– An L-Channel PMU: Suppose L is a positive non-zero integer. A PMU placed on
bus vi with channel capacity L can measure the voltage phasor of vi and the current
phasors of L lines incident to it. By Ohm’s law (as discussed in next section), the
voltage phasors of L neighbors of vi can additionally be inferred. Therefore, if a
bus vi has degree equal to or less than L (i.e., di ≤ L), an L-channel PMU placed
at this bus will be sufficient to observe all buses within N[vi] and all lines incident
to vi. Otherwise, if di > L, an L-channel PMU placed on vi can only observe vi
and a subset of N(vi) with cardinality L, in addition to lines between vi and this
subset. We denote the cost for a PMU with channel capacity L as cL.
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– The number rL
i of combinations (subsets) of set N(vi) that an L-channel PMU

placed on bus vi can observe is given by:

rL
i =

{
1, if di ≤ L(di

L

)
, if di > L.

The total number of these combinations is given by: m = ∑
n
i=1 rL

i , where
(di

L

)
=

di!/(L!(di−L)!).
– The subsets Si1,Si2, · · · ,SirL

i
of incident lines at bus vi that a PMU with channel

capacity L can observe is given as follows:
– If rL

i = 1, the subset of incident lines that a PMU with channel capacity L
placed at bus vi that can be observed is Si1 = N[vi].

– If rL
i ≥ 2, the subset of incident lines that a PMU with channel capacity L can

be observed is an L-cardinality subset of N(vi) with the bus vi.
– The subsets at vi are Si1,Si2, · · · ,SirL

i
. Bus vi is called as the center of subset Sir

and it is the bus where PMU should be placed to observe Sir (r = 1,2, · · · ,rL
i ).

– Family of subsets at all buses within V :

SL = {S11, · · · ,S1rL
1
,S21, · · · ,S2rL

2
, · · · ,Sn1, · · · ,SnrL

n
}

– Let bi jr = 1 denote that vi belongs to the subset S jr, and bi jr = 0 otherwise.
Obviously, biir = 1 for any vi ∈V . Given a PSG G, this family is only related to
the channel L. These parameters form a containment matrix B = (bi jr)n×n×ri ,
to state that whether a bus is in some subset or not.

With an unlimited number of channels, a PMU placed on bus vi can observe all
buses within N[vi]. However, with limited channel capacity L, a PMU at vi can only
observe a subset of N[vi]. Therefore, to completely observe all buses of the system
G, we have to choose some subsets within the family SL such that PMUs placed on
their centers can guarantee complete observability of the power system.

Let xs ∈ {0,1} denote a binary decision variable such that xs = 1 if a PMU is
placed on the center of subset Ss, and xs = 0 otherwise, where the index s is in the
set of indices {11, · · · ,1rL

1 ,21, · · · ,2rL
2 , · · · ,n1, · · · ,nrL

n} based on the family SL. The
Placement vector x is formed by x = (x1, · · · ,xs, · · · ,xm)

T ∈ {0,1}m.

Now, we consider an illustrative example using the IEEE 14-Bus system with 14
buses and 20 lines (its topological structure is shown in Fig. 1). Bus 7 is the only
zero-injection bus, i.e., VZ = {7}.

Assume that the channel capacity for PMUs is 4, i.e., L = 4. By the notations
and methods introduced above, we have that rL

4 = 5, all other rL
i are 1, and the total

number of combinations is m = ∑
14
i=1 rL

i = 18. The family of subsets that a PMU with
channel capacity 4 is given as:

S4 = {{1,2,5},{2,1,3,4,5},{3,2,4},{4,2,3,5,7},{4,2,3,5,9},
{4,2,3,7,9},{4,2,5,7,9},{4,3,5,7,9},{5,1,2,4,6},{6,5,11,12,13},
{7,4,8,9},{8,7},{9,4,7,10,14},{10,9,11},{11,6,10},{12,6,13},
{13,6,12,14},{14,9,13}},
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Fig. 1 Topological Structure of the IEEE 14-Bus System

where the center of each subset is assumed to be the first element of the subset.
At bus 4 with rL

4 = 5, a PMU can observe exactly all buses within only one set
of {4,2,3,5,7},{4,2,3,5,9},{4,2,5,7,9},{4,3,5,7,9}. By the family S4, the con-
tainment matrix formed by bi jr can be easily obtained.

2.2 Terminology

Two fundamental properties that can be used to reduce the number of PMUs required
to achieve complete observability in a power system are as follows:

– Ohm’s law: The current Ii j through a conductor between two points is directly
proportional to the voltage Vi−Vj across the two buses vi,v j, and is inversely
proportional to the resistance Ri j between them, i.e., Ii j = (Vi−Vj)/Ri j;

– Kirchhoff’s current law: At any bus vi in an circuit, the sum of currents flowing
into vi is equal to the sum of currents flowing out of it, i.e., ∑ j:v j∈N(vi) Ii j = 0.
Therefore, if all Ii j (v j ∈ N(vi)) are observed except one (say j′), then Ii j′ =
−∑ j:v j∈N(vi), j 6= j′ Ii j, i.e., Ii j′ is also observed. This law is only applied at zero-
injection buses.

In the following, we assume the state variable to be observed on bus vi is the
voltage Vi, and on line (vi,v j) is the current Ii j. As discussed above, a PMU with
channel capacity L placed at bus vi can observe one subset Sir of SL. More specifi-
cally, such a PMU can directly measure the voltage Vi of bus vi and the current Ii j for
v j ∈ Sir \{vi}. By Ohm’s law, the voltage for bus v j ∈ Sir \{vi} can be computed by
Vj =Vi− Ii jRi j. Thus, all buses within Sir can be observed by the PMU placed on the
center vi of Sir.

Therefore, a bus vi of a PSG can be observed in one of the following ways:

(a) A PMU is placed on vi;
(b) The bus vi is contained within the subset S jr ( j 6= i), and a PMU is placed on the

center of this subset (by Ohm’s law);
(c) The bus vi is one of the buses within N[v j] ((v j,vi) ∈ E) or N[vi], while all other

buses within the set N[v j] or N[vi] are observed (by Ohm’s law and Kirchhoff’s
current law).
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Consider the example shown in Fig. 1, which has bus 7 as the only zero-injection
bus. If all of the buses within {7,4,8,9} except one are observed, this unobserved bus
is indirectly observed by Kirchhoff’s current law.

By Ohm’s law, if the two terminal buses of a line are observed, the line is also
observed. Therefore, we have the following:

Lemma 1 The complete observability of all buses guarantees the complete observ-
ability of all lines.

The objective of the MC-PPP is to find a placement P ⊆SL with minimum |P|
such that

⋃
Ss∈P Ss =V in the power system graph G = (V,E). Here a placement for

Ss ∈P indicates that a PMU with channel L is placed on the center of Ss.

2.3 An IP Model for the Multi-Channel PMU Placement Problem without
Considering the Zero-Injection Buses

Let fi be the number of times that bus vi is observed. Without considering Kirchhoff’s
current law applied on the zero-injection buses, fi can be expressed as:

fi = ∑
s:vi∈Ss

xs =
n

∑
j=1

rL
j

∑
r=1

bi jrx jr, (1)

where ∑s:vi∈Ss xs denotes that the number of times that bus vi is in the observed family

of SL, which can be expressed by ∑
n
j=1 ∑

rL
j

r=1 bi jrx jr. For complete observability of
all buses, the inequality:

fi ≥ 1

must hold. The objective of the MC-PPP is to minimize the total cost of PMUs with

homogeneous channel capacity L, which can be expressed as ∑
n
j=1 ∑

rL
j

r=1 cLx jr. An IP
formulation for the MC-PPP is then given as follows:

[MC-PPP] :

min
n

∑
j=1

rL
j

∑
r=1

cLx jr (2a)

s.t.

{
∑

n
j=1 ∑

rL
j

r=1 bi jrx jr ≥ 1, i = 1, · · · ,n
x jr ∈ {0,1}, j = 1, · · · ,n, r = 1, · · · ,rL

j

(2b)

In this formulation, all PMUs with channel capacity L are assumed to have identical
costs. The resulting integer program can be solved by commercial solvers, such as
CPLEX, to obtain exact solutions directly.

We now discuss several aspects of the MC-PPP formulation:
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2.3.1 Relation to the Set Cover Problem

Let V be a set of elements and SL = {S11, · · · ,S1rL
1
,S21, · · · ,S2rL

2
, · · · ,Sn1, · · · ,SnrL

n
}

be the family formed by some subsets of V . The MC-PPP is equivalent to the set cover
problem, i.e., the problem of identifying the smallest number of subsets in SL whose
union contains all elements in the set V . The decision variable xs can be considered
as whether the subset Ss is selected to be in the union.

The set cover problem is one of Karp’s 21 problems shown to be NP-complete in
1972 [23,24], and many algorithms are available for solving this problem [25].

2.3.2 Case L = 1: Single-Channel/Branch PMUs

A single-channel or branch PMU is a PMU with L = 1, which can only observe two
adjacent buses and the single line connecting these two buses.

When L = 1 and under the assumption δ (G)≥ 1, there are rL
i = di subsets at bus

vi, and a total of m = ∑
n
i=1 rL

i = ∑
n
i=1 di = 2|E| subsets in SL. Additionally, all subsets

in SL have the cardinality 2. For the set {vi,v j} formed by two endpoints of an edge
(vi,v j) ∈ E, there are two corresponding subsets Sir′ ,S jr′′ in SL.

On the other hand, if a PMU is placed on vi, bus v j is observed and vice versa.
Given a cost minimization objective, at most one of these vertices will be chosen
to place a PMU, i.e., xir′ + x jr′′ ≤ 1. To reduce the number of decision variables in
formulation (2), one variable for each edge is sufficient to formulate the problem
under this assumption. In fact, we have shown that the formulation in [15] is a special
case of our formulation.

2.3.3 Case L≥ ∆(G)

The number of combinations at bus vi is rL
i = 1 for any vi ∈V , and the total number

is m = ∑
n
i=1 rL

i = n. In this case, we can establish a relationship between the MC-
PPP and the dominating set problem (DSP). The DSP is stated as follows: For a
graph G = (V,E), a dominating set is a subset D of V such that every vertex not in
D is joined to at least one member of D by some edge. The minimum dominating
set problem is to find a dominating set D∗ with smallest cardinality. The domination
number γ(G) = |D∗|. Assume x = (x1, · · · ,xn)

T is a decision vector where xi ∈ {0,1}
indicates whether vertex vi is in the dominating set (xi = 1) or not (xi = 0). An IP
formulation for DSP is as follows:

min ∑
i

xi (3a)

s.t. ∑
j

ai jx j ≥ 1, xi ∈ {0,1}, i = 1, · · · ,n (3b)

The DSP is also a classic combinatorial optimization problem, and is known to
be NP-hard [26].

For the MC-PPP in (2), when L ≥ ∆(G), the family of subsets is SL = {N[vi] :
vi ∈V}. Therefore, only exactly one decision variable is required for each subset with
center at vi. In this case, the formulation (2) is equivalent to formulation (3).
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Therefore, when L ≥ ∆(G), the optimal value of MC-PPP will remain the same.
This corresponds to the PMU placement problem widely studied in the literature,
which lacks channel limits and does not consider the zero-injection bus property.

When L = 4, solving formulation (2) for the system in Fig. 1, yields PMUs
placed on buses 2,6,7 and 9 of subsets {2,1,3,4,5}, {6,5,11,12,13},{7,4,8,9},
and {9,4,7,10,14}. The PMU placed on the corresponding center can observe all
buses within that subset. For example, the PMU on bus 6 observes buses 6,5,11,12
and 13. This result does not consider the zero-injection bus 7 and at least 4 PMUs
with channel capacity 4 are needed.

2.4 Modeling the Zero-Injection Buses in the MC-PPP

We have shown that the MC-PPP is closely related to the set cover problem and
the dominating set problem in special cases. Ohm’s law is actually used in these
discussions. However, Kirchhoff’s current law has not been applied. In the following,
we apply Kirchhoff’s current law to every zero-injection bus to reduce the required
number of PMUs for complete observability of a power system.

Let yi j,y ji ∈ {0,1} be and auxiliary variable for all lines (vi,v j)∈ E. This method
was introduced in [9] and [4]. After adding the auxiliary constraints:

n

∑
j=1

ai jyi j = Zi, i = 1, · · · ,n (4a)

yi j = 0, ∀i, j with ai j = 0 or i /∈VZ (4b)
yi j ∈ {0,1}, i, j = 1, · · · ,n (4c)

two cases can be distinguished: (1) if vi is not a zero-injection bus (Zi = 0), all yi j = 0
for lines incident to i; (2) if vi is a zero-injection bus (Zi = 1), all yi j = 0 except for
one yi j′ ; this non-zero term can be added to f j′ , which increases the observability
of bus v j′ . Therefore, by considering the zero-injection buses connected to vi, fi in
formulation (1) becomes

fi =
n

∑
j=1

rL
j

∑
r=1

bi jrx jr +
n

∑
j=1

ai jZ jy ji, i = 1, · · · ,n. (5)

There are other methods for modeling zero-injection buses. For example, non-
linear terms were added in [5], and auxiliary variables were added for buses in [6].
In this formulation, every zero-injection bus provides an observation of some bus by
(4a), and further reductions are impossible.



10 N. Fan, J.-P. Watson

The IP formulation for the MC-PPP with consideration of zero-injection buses is
then given as follows:

[MC-PPP]0 :

min
n

∑
j=1

rL
j

∑
r=1

cLx jr (6a)

s.t.


∑

n
j=1 ∑

rL
j

r=1 bi jrx jr +∑
n
j=1 ai jZ jy ji ≥ 1, i = 1, · · · ,n

∑ j ai jyi j = Zi, i = 1, · · · ,n
yi j = 0, ∀i, j with ai j = 0 or i /∈VZ

x jr,yi j ∈ {0,1}, i, j = 1, · · · ,n, r = 1, · · · ,rL
j

(6b)

Similarly, when L≥ ∆(G), this formulation is for the general PMU placement prob-
lem without considering channel limits.

When L = 4, solving the formulation in (6) for the system shown in Fig. 1,
yields PMUs placed on buses 2,6 and 9 of subsets {2,1,3,4,5},{6,5,11,12,13},
and {9,4,7,10,14}. Since buses 7,4 and 9 within {7,4,8,9} are all observed by the
PMU on bus 9, only bus 8 is not observed. By applying Kirchhoff’s current law to
the zero-injection bus 7, bus 8 is observed. Comparing with the result by (2), we can
reduce the number of required PMUs by one for this system.

3 PMU Placement with Measurement Redundancy

Measurement redundancy is defined as the observability counts for a bus minus one.
When monitoring a power system, each bus has to be observed at least once for
complete observability. However, for cross-validation analysis [3] and some contin-
gencies, it is desirable for every bus to have some kind of measurement redundancy.
In some papers [6,3], instead of minimizing the number of PMUs, observability is
maximized for given number of PMUs.

The redundancy for bus vi is defined as fi − 1. Assume Rb is the redundancy
requirement for all buses. We introduce the following IP formulation for the MC-
PPP considering measurement redundancy for buses:

[MC-PPP]R :

min
n

∑
j=1

rL
j

∑
r=1

cLx jr (7a)

s.t.


∑

n
j=1 ∑

rL
j

r=1 bi jrx jr +∑
n
j=1 ai jZ jy ji−1≥ Rb, i = 1, · · · ,n

∑ j ai jyi j = Zi, i = 1, · · · ,n
yi j = 0, ∀i, j with ai j = 0 or i /∈VZ

x jr,yi j ∈ {0,1}, i, j = 1, · · · ,n, r = 1, · · · ,rL
j

(7b)
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For bus vi, the summation κi := ∑
n
j=1 ∑

rL
j

r=1 bi jr denotes the number of subsets
in SL that contain vi. Let κ(G,L) = mini=1,··· ,n κi denote the minimum number of
subsets that buses in V can belong to those subsets in SL. To satisfy Rb redundancy
for bus vi, considering the relations between the redundancy Rb and κ(G,L), there
are two cases needed to be addressed:

– If κ(G,L)≥ Rb +1, ∑
n
j=1 ∑

rL
j

r=1 bi jrx jr +∑
n
j=1 ai jZ jy ji ≥ Rb +1 could have a fea-

sible solution and satisfies the redundancy requirement Rb for all buses;
– if κ(G,L)< Rb +1, for buses in {vi ∈V : κi ≥ Rb +1}, the constraint

n

∑
j=1

rL
j

∑
r=1

bi jrx jr +
n

∑
j=1

ai jZ jy ji ≥ Rb +1

is still valid; for buses in {vi ∈ V : κi < Rb + 1}, additional PMUs should be
placed.

We assume that Rb + 1 ≤ κ(G,L), and among the test systems, Rb = 0 or 1. For
Rb = 0, this model reduces to the model [MC-PPP]0.

When Rb = 1, PMUs can still have complete system observability given the loss
of any one PMU. In case of the loss of any one PMU, buses within the set that
this PMU was placed will have one less mechanism for observability, but still have
observability larger than or equal to 1. The number of observability mechanisms for
all other buses are all still larger than or equal to 2. Thus, the whole system still has
complete observability.

For the system shown in Fig. 1, when Rb = 1, 8 PMUs with channel capacity
4 are placed on buses 2,4,5,6,7,9,10 and 13 in order to achieve complete system
observability with one redundancy at minimal cost.

Without considering the zero-injection bus property, the constraints in formula-
tion (7) become: {

∑
n
j=1 ∑

rL
j

r=1 bi jrx jr ≥ Rb +1, i = 1, · · · ,n
x jr ∈ {0,1}, j = 1, · · · ,n, r = 1, · · · ,rL

j

which, with the objective min∑
n
j=1 ∑

rL
j

r=1 cLx jr, is the Set Multi-Cover Problem. This
problem is a generalized version of the set cover problem, and requires that the se-
lected subsets can cover every element at least Rb +1 times. For more details of this
problem, we refer to [27].

4 Extended Formulation for PMUs with Different Channel Capacities

In Sections II and III, the PMUs for a given system are assumed to have the same
channel capacity L. If there are different types of PMUs with different channel ca-
pacities that can be installed into a system, this will change the total installation cost.
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We assume that PMUs can have channel capacities from l = 1,2, · · · , L with different
costs, where L is largest number of available channels.

For subsets at bus vi, we have to consider all combinations/subsets with cardinal-
ity l = 1,2, · · · , L. If di ≤ L, there are

ri = 2di −1

subsets at bus vi; If di > L, there are

ri =

(
di

1

)
+

(
di

2

)
+ · · ·+

(
di

L

)
subsets. The family S = ∪l=1,··· ,LSl now has more number of subsets than SL.
When L≥ ∆(G), the total number of subsets is given as:

n

∑
i=1

2di −n.

Based on this family, we can straightforwardly form the containment matrix B =
(bi jr)n×n×ri .

Similarly, for a subset Sir with one center vi and |Sir| − 1 buses connected to it,
a PMU with channel capacity |Sir| − 1 placed on vi will be sufficient to observe all
buses within Sir. Assume that the cost to place a PMU on the center of Sir is cir(Sir),
and that this cost should reflect the channel capacity |Sir|− 1. For example, we can
simply assume cir(Sir) = |Sir|, which is equal to the channel capacity of the PMU
placed on the center of Sir. The integer programming formulation for the MC-PPP
with different types of PMUs and consideration of zero-injection buses can be given
as follows:

[MCt -PPP]0 :

min
n

∑
j=1

r j

∑
r=1

c jr(S jr)x jr (8a)

s.t.


∑

n
j=1 ∑

r j
r=1 bi jrx jr +∑

n
j=1 ai jZ jy ji ≥ 1, i = 1, · · · ,n

∑ j ai jyi j = Zi, i = 1, · · · ,n
yi j = 0, ∀i, j with ai j = 0 or i /∈VZ

x jr,yi j ∈ {0,1}, i, j = 1, · · · ,n, r = 1, · · · ,r j

(8b)

Given optimization objective (8a), at most one subset at bus vi will be chosen to
place a PMU to satisfy the complete observability requirement. In contrast to (6), this
formulation can have as many as ∑

n
i=1 2di − n decision variables in x while (6) has

∑i:di≤L 1+∑i:di>L
(di

L

)
variables in x.

As indicated in Section 1, the PMU placement problem with varying numbers
of channel capacities was proposed in [13]. However, heuristic methods were used
for obtaining approximate solutions without considering the effects of zero-injection
buses. Although [20] considered the zero-injection buses, its original formulation and
the associated problem parameters had to be significantly changed to consider PMUs



Multi-Channel PMU Placement Problem 13

with varying numbers of channels. In our model, if PMUs are only available with
channel capacities from the set {l1, l2, · · · , lL} (in the increasing order, with ik a pos-
itive integer for any k = 1, · · · ,L), the family of subsets can be generated similarly.
Depending on the relation between the degree of a bus and the values within the
channel capacity set, we generate the subsets with the corresponding cardinalities.
Precisely, if di > lL, all subsets with cardinality lk (1 ≤ k ≤ L) should be generated;
when ik ≤ di ≤ ik+1 for some k, all subsets with cardinality i1, · · · , ik should be gener-
ated. The corresponding family of subsets S can be generated by these subsets, and
similarly the matrix B can be formed. In the numerical experiments of next section,
we will compare our results with those reported in [20].

5 Numerical Experiments

The IP formulations for our proposed optimization models are implemented in C++
and solved using CPLEX 12.1 via IBM’s Concert Technology 2.9 callable library. All
computations were performed on a Linux workstation with a quad-core Intel R©XeonTM

3.60GHz CPU and 8GB of RAM. Each of the experiments reported below (i.e., the
solution of a particular instance of a given model) were completed within 1 second
of wall clock time. Each model is tested on a variety of standard IEEE test instances.

In Table 2, we report the number of combinations / subsets m for different values
of L, for each test instance we consider. The number of combinations generally runs
in the hundreds (e.g., for the IEEE 30-bus, 57-bus, 118-Bus, and RTS-96 systems),
although the counts reach into the thousands for the larger IEEE 300-bus system. Yet,
despite relatively large values of m, CPLEX is able to quickly solve all instances –
independent of the optimization model.

In Section 2, we illustrated our optimization models using the IEEE 14-bus test
system given PMUs with channel capacity L = 4. Here, we expand this analysis by
considering six standard IEEE test systems, varying the channel capacities from 1 to
∆(G) for the corresponding instance. Parallel lines were removed from the original
instances, obtained from [28]. In the left half of Table 1, we report key statistics for the
various test systems. For each combination of test instance and L, we generated the
family SL, and then formed the containment matrix based on this family. To generate
all L-cardinality subsets of N(vi), we used a simple recursive method. Alternatively,
for improved speed, commercial software such as Matlab can be used to generate
these subsets directly.

We first consider the minimal number of PMUs obtained on the various test
instances, for the [MC-PPP], [MC-PPP]0, and [MC-PPP]R optimization models.
Clearly, the cost in these cases is simply cL times the corresponding PMU count, and
the counts for cases when L≥∆(G) are identical to the results obtained for L=∆(G).
Table 1 reports results obtained when ignoring the zero-injection bus property (opti-
mization model [MC-PPP], while the left half of Table 3 reports results obtained by
considering the application of Kirchhoff’s current law to zero-injection buses. Com-
paring results for a given test instance under the same channel capacity L, we observe
– as expected - a significant drop in the number of PMUs required to achieve system
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Table 1 Results for Multi-Channel PMU Placement by [MC-PPP]

Optimal number of PMUs when Channel L =
Instance |V | |E| ∑i Zi ∆(G) 1 2 3 4 5 6 7 8 9 10 11

IEEE 14-Bus 14 20 1 5 7 5 4 4 4
IEEE 30-Bus 30 41 6 7 15 11 10 10 10 10 10
IEEE 57-Bus 57 78 15 6 29 19 17 17 17 17

RTS-96 73 108 22 5 37 25 20 20 20
IEEE 118-Bus 118 179 10 9 61 41 33 32 32 32 32 32 32
IEEE 300-Bus 300 409 65 11 167 105 91 89 88 88 88 87 87 87 87

Note: The column labeled ”∑i Zi” reports the total number of zero-injection buses.

observability. Empirically, the reduction in PMUs required is generally less than or
equal to the number ∑i Zi of zero-injection buses in the system.

In [17] (Table 4.1 and Table 4.2, page 32–33), similar results are reported for all
systems with the exception of RTS-96, and [18] (Table I) and [20] (Table I and Ta-
ble III) report similar results for all systems with the exception of RTS-96 and the
IEEE 300-bus. In contrast to the results reported in [17,18], which were obtained us-
ing heuristic solution procedures for consideration of zero-injection bus property, our
approach guarantees globally optimal solutions for all test instances. With the excep-
tions reported below, our results are always less than or equal to the values reported in
[17,18,20]. This implies that our methods (exact solution via integer programming)
generally obtain better solutions. Additionally, our methods still obtain exact solu-
tions for IEEE 300-Bus system in less than 1 second, while the results for this system
was not tested in [17,18,20]. For experiments with the IEEE 118-Bus system when
L = 3 or 4 (in first half of Table 3), we have results 31 and 29, while the correspond-
ing values in [17,18] are 30 and 28 (best among all approaches used). Because the
actual PMU placements were not reported in [17,18], we cannot verify the correct-
ness. However, we observe that our results are obtained using a commercial solver,
which consistently (with the exception of these cases) obtains superior results.

Next, we consider the results (shown in the second half of Table 3) obtained under
the [MC-PPP]R model, requiring one redundant observation per bus – which in turn
guarantees one redundant observation per line. Comparing the cases without redun-
dancy and with single-observation redundancy, we observe that very large numbers
(in most cases, at least double) of additional PMUs are required. This result provides
a rigorous quantification of the cost of imposing redundancy requirements for system
observability.

We now relax the requirement of homogeneous channel capacities L, and focus
on the total cost of PMUs placed under this relaxation. Assume the cost for a PMU
with channel capacity L is cL = L + 1. Further, assume that a PMU with channel
capacity |Sir|−1 – required to observe the subset Sir – has cost c(Sir) = |Sir|. Results
for the minimal cost of PMU placement for the optimization models [MC-PPP]0 and
[MCt -PPP]0 are shown in Table 4. For all test systems, we observe that the total
cost of PMUs becomes stable when there are more available types of PMUs. Further,
when contrasting the minimal costs given a single type of PMU (as reported in the
first half of Table 4) versus multiple types of PMUs (asa reported in the second half
of Table 4), we observe that the cost of multiple PMUs is always less than the single
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Table 2 Number of Combinations/Subsets m for Different Values of L

L
Instance 1 2 3 4 5 6 7 8 9 10 11

IEEE 14-Bus 40 47 35 18 14
IEEE 30-Bus 82 103 104 82 55 36 30
IEEE 57-Bus 156 171 143 97 67 57

RTS-96 216 252 178 97 73
IEEE 118-Bus 358 516 582 508 368 240 160 126 118
IEEE 300-Bus 818 1131 1193 1202 1126 928 678 472 354 310 300

Table 3 Results for Multi-Channel PMU Placement by [MC-PPP]0 and [MC-PPP]R

L 1 2 3 4 5 6 7 8 9 10 11
Instance [MC-PPP]0 Optimal number of PMUs

IEEE 14-Bus 7 5 4 3 3
IEEE 30-Bus 13 8 7 7 7 7 7
IEEE 57-Bus 21 14 12 11 11 11

RTS-96 26 17 14 14 14
IEEE 118-Bus 56 37 31 29 28 28 28 28 28
IEEE 300-Bus 127 85 72 69 69 69 69 68 68 68 68

Instance [MC-PPP]R Optimal number of PMUs when Rb = 1
IEEE 14-Bus 14 9 8 8 8
IEEE 30-Bus 28 19 16 16 16 16 16
IEEE 57-Bus 50 33 28 27 27 27

RTS-96 62 42 33 32 32
IEEE 118-Bus 115 78 64 63 63 63 64 64 64
IEEE 300-Bus 290 191 165 162 161 162 164 164 163 163 170

type of PMUs. This observation has the potential for significant impact on practice,
in terms of achieving significant cost savings, and more accurately reflects the range
of hardware options available for deployment.

Table 4 Minimum Cost of Multi-Channel PMU Placement by [MC-PPP]0 and [MCt -PPP]0

L 1 2 3 4 5 6 7 8 9 10 11
Instance [MC-PPP]0 Objective

IEEE 14-Bus 14 15 16 15 18
IEEE 30-Bus 26 24 28 35 42 49 56
IEEE 57-Bus 42 42 48 55 66 77

RTS-96 52 51 56 70 84
IEEE 118-Bus 112 111 124 145 168 196 224 252 280
IEEE 300-Bus 254 255 288 345 414 483 552 612 680 748 816

Instance [MCt -PPP]0 Objective when max L
IEEE 14-Bus 14 13 13 13 13
IEEE 30-Bus 26 24 24 24 24 24 24
IEEE 57-Bus 42 42 42 42 42 42

RTS-96 52 51 51 51 51
IEEE 118-Bus 112 108 108 108 108 108 108 108 108
IEEE 300-Bus 254 240 237 236 236 236 236 235 235 235 235

Note: Assume that cL = L+1,c(Sir) = |Sir|.
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Finally, In Table 5 and Table 6, we repeat the experiments reported by [20] (Table
II and Table IV in [20]), using two types of PMUs with varying channel capacities to
obtain complete system observability. Additionally, we also test our models on IEEE
300-Bus system. Table 5 shows the optimal numbers of two types of PMUs (under
different cost ratios) without considering the zero-injection bus property, while Table
6 reports results obtained when considering the zero-injection bus property. Compar-
ing our results with those reported in [20], with the exceptions reported below, our
results are always require equal or fewer numbers of PMUs. For example, consider
the results reported in Table 6 for the IEEE 118-bus test system, when c1/c2 = 5/6.
Under our optimization model, we require 3 PMUs with channel limit 1 and 34 PMUs
with channel limit 2 (the associated cost is 43.8c1), while results reported in Table IV
of [20] indicate that 7 PMUs with channel limit 1 and 31 PMUs with channel limit 2
are required (associated cost is 44.2c1). For experiments with the IEEE 57-Bus sys-
tem when c1/c2 = 4/5 (in Table 5), we have results 16 and 5 (the associated cost
is 22.25c1), while the corresponding values in [20] are 7 and 10 (the associated cost
is 19.5c1). Because the actual PMU placements were not reported in [20], we can-
not verify the correctness. However, we observe that our results are obtained using a
commercial solver, which consistently (with the exception of this case, and the cases
for IEEE 118-Bus when c1/c4 = 4/5 in Table 5 and also in Table 6) obtains superior
results.

Table 5 Optimal Number of Various Types of PMUs for Multi-Channel PMU Placement (w/o considera-
tion of zero-injection buses)

Types of PMUs Associated Cost IEEE 14-Bus IEEE 30-Bus IEEE 57-Bus RTS-96 IEEE 118-Bus IEEE 300-Bus
with Channel Limit Ratio

l1 = 1 c1/c2 = 5/6 1 3 0 2 5 10
l2 = 2 4 8 19 23 36 95
l1 = 1 c1/c3 = 2/3 1 5 9 5 13 37
l2 = 3 3 5 10 16 23 59
l1 = 1 c1/c4 = 4/5 1 6 16 12 16 62
l2 = 4 3 4 5 11 19 40
l1 = 1 c1/c4 = 1/3 7 15 29 37 58 130
l2 = 4 0 0 0 0 1 10
l1 = 2 c2/c5 = 2/3 3 9 17 21 27 78
l2 = 5 1 1 1 2 7 14
l1 = 2 c2/c5 = 1/2 5 11 19 25 36 98
l2 = 5 0 0 0 0 2 3

Table 6 Optimal Number of Various Types of PMUs for Multi-Channel PMU Placement (with consider-
ation of zero-injection buses)

Types of PMUs Associated Cost IEEE 14-Bus IEEE 30-Bus IEEE 57-Bus RTS-96 IEEE 118-Bus IEEE 300-Bus
with Channel Limit Ratio

l1 = 1 c1/c2 = 5/6 2 0 0 0 3 13
l2 = 2 3 8 14 17 34 71
l1 = 1 c1/c3 = 2/3 1 4 5 4 9 27
l2 = 3 3 4 8 11 23 47
l1 = 1 c1/c4 = 4/5 0 3 9 5 14 45
l2 = 4 3 4 5 9 17 32
l1 = 1 c1/c4 = 1/3 7 13 21 26 52 105
l2 = 4 0 0 0 0 1 6
l1 = 2 c2/c5 = 2/3 1 6 12 12 25 61
l2 = 5 2 1 1 3 6 12
l1 = 2 c2/c5 = 1/2 5 8 14 17 33 74
l2 = 5 0 0 0 0 2 5
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6 Conclusions

In this paper, we have studied a variety of general integer programming models for the
multi-channel PMU placement problem, focusing on incorporation of more realistic
modeling assumptions than are typically considered in the literature. These include
consideration of PMUs with limited channel capacities, the availability of PMUs with
varying channel capacities, and PMU placement subject to measurement redundancy.
We demonstrated that these integer programming models are easily solvable by com-
mercial software systems, to global optimality, and in minimal run-times (less than
one second for all tested systems and cases). Our results suggest that heuristic so-
lution methods – which cannot guarantee optimality – are not necessary to solve
realistic PMU placement models, and may not be necessary for even larger, real-
world systems. Additionally, we establish relationships between the PMU placement
problem and some classic combinatorial problems, such as the set cover problem, the
dominating set problem, and the set multi-cover problem. Establishing these connec-
tions, which are not widely known in the power systems literature, can potentially
impact solution methods for PMU placement problems in the future.
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